刘同存,博士,副教授,硕士研究生导师。毕业于北京邮电大学,计算机科学与技术专业,获工学博士学位,2023-2024在香港科技大学做高级访问学者。从事大模型、推荐系统、时空智能等人工智能前沿技术的基础理论和方法研究,以及AI4Science跨学科交叉融合研究。主持国家自然科学基金面上项目1项、浙江省自然科学基金项目1项;参与国家973、教育部-中国移动科研基金、浙江省联合基金重大项目等多项;主导了中国移动多个大数据与人工智能前沿技术的攻关和产品化。以第一作者/通讯作者身份在IEEE TNNLS、Applied Soft Computing、Neural Networks、IEEE IOT Journal、IEEE/ACM TCBB、KBS、EST、BiB、WWW、Neurocomputing、电子学报、通信学报等国内外顶级期刊以及WWW、AAAI等CCF A类会议上发表高水平论文30余篇,获授权发明专利10余项。
Jiaxin Zhang, Yulong Wang,Tongcun Liu*, Lei Zhang, Wei Li,Jianxin Liao. Hyperbolic spatial-temporal network for session-based recommendation.Applied Soft Computing, 2025.
Kai Fang, Jiangtao Deng, Chengzu Dong, Usman Naseem, Tongcun Liu, Hailin Feng, Wei Wang. MoCFL: Mobile Cluster Federated Learning Framework for Highly Dynamic Network,WWW,2025,5065-5074.(CCF A类会议论文)
Tongcun Liu, Guochun Yu, Hoi Yan Kwok, Runze Xue, Ding He, Wenzhao Liang. Enhancing tree-based machine learning for chlorophyll-a prediction in coastal seawater through spatiotemporal feature integration. Marine Environmental Research, 2025.
Hailin Feng, Jiefan Qiu, Long Wen, Jinhong Zhang, Jiening Yang, Zhihan Lyu,Tongcun Liu*, Kai Fang*. U3UNet: An accurate and reliable segmentation model for forest fire monitoring based on UAV vision.Neural Networks, 2025.
Tongcun Liu, Xukai Bao, Jiaxin Zhang, Kai Fang, and Hailin Feng. Enhancing Session-based Recommendation with Multi-Interest Hyperbolic Representation Networks.IEEE Transactions on Neural Networks and Learning Systems, 2024.
Jijing Cai+,Tongcun Liu+, Tingting Wang, Hailin Feng, Kai Fang, Ali Kashif Bashir, Wei Wang. Multi-Source Fusion Enhanced Power-Efficient Sustainable Computing for Air Quality Monitoring.IEEE Internet of Things Journal, 2024.
Chenchen Ke, Hailin Feng, Quan Zou, Zhechen Zhu,Tongcun Liu*. Prediction of potential miRNA-disease associations based on a masked graph autoencoder.IEEE/ACM Transactions on Computational Biology and Bioinformatics,2024.
Zhicheng Liu,Yulong Wang,Tongcun Liu*, Lei Zhang, Wei Li, Jianxin Liao, Ding He. Semantic-enhanced Contrastive Learning for Session-based Recommendation.Knowledge-based System,2023.
Yuanbi Yi,Tongcun Liu*, Julian Merder,Chen He, Hongyan Bao, Penghui Li, Si-Liang Li,Quan Shi, Ding He*. Unraveling the Linkages between Molecular Abundance and Stable Carbon Isotope Ratio in Dissolved Organic Matter using Machine Learning.Environmental Science & Technology,2023.
Hailin Feng, Dongdong Jin, Jian Li, Yaner Li, Quan Zou,Tongcun Liu*. Matrix reconstruction with reliable neighbors for predicting potential MiRNA–disease associations.Briefings in Bioinformatics, 2023.
Tongcun Liu*, Siyuan Lou, Jianxin Liao, Hailin Feng*. Dynamic and Static Representation Learning Network for Recommendation.IEEE Transactions on Neural Networks and Learning Systems,2022.
Gao Lei, Wang Yulong,Liu Tongcun*, Wang Jingyu, Zhang Lei, Liao Jianxin. Question-Dirven Span Labeling model for Aspect-Opinion pair Extraction,AAAI,2021,12875-12883.(CCF A类会议)
Liao Jianxin,Liu Tongcun*, Yin Hongzhi, Chen Tong, Wang Jingyu, Wang Yulong. An integrated model based on deep multimodal and rank learning for point-of-interest recommendation,World Wide Web, 2021, 24:631–655.
1.刘同存,何丁,冯海林,余君、吕晓敏、郭洪波.《Python基础教程与项目实践》,电子工业出版社,2024.